Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Balance of Electrical Power Requirements through Smart Electric Power Management

2011-04-12
2011-01-0042
This paper examines Smart Electric Power Management as it pertains to when the vehicle charging system is active. Over the past decade there have been several factors at play which have stressed the demands placed upon the vehicle electrical power system. Many of these factors present challenges to electrical power that are at cross-purposes with one another. For example, demands of new and existing electrical loads, customer expectations about load performance and battery life, and the push by governments' world-wide for increased fuel economy (FE) and reduced CO2 emissions all have direct impact and can be directly impacted by decisions made in electric power design. As the electrification of the vehicle has progressed we now have much more specific vehicle state data available and the means to share this information among on-board computers through serial data link connectivity.
Technical Paper

Adaptive Remote Vehicle Start Operation for Reduced Fuel Consumption

2011-04-12
2011-01-0045
Remote vehicle start systems are commonly available as an aftermarket accessory, and more recently, as a factory installed vehicle feature. These systems and their associated algorithms enable a user of the vehicle to remotely start the engine and/or other vehicle systems with the end goal of preconditioning the cabin environment, for example, if the user wishes to have the vehicle's interior heated or cooled before the user enters the vehicle. However, if the engine is remotely started for an extended period of time, the increased use of fuel, energy, and/or other resources may be greater than optimal or desired. Through the use of available vehicle sensors and enhanced algorithms, a system can be implemented which allows the passenger cabin to be heated or cooled to within a range of moderate temperatures, while reducing the resources utilized by the vehicle.
Technical Paper

Method and System for Determining the Location of a Lost Vehicle Key Fob

2011-04-12
2011-01-0044
Key fobs, also known as remote keys or remote transmitters, have become a common piece of equipment in today's vehicle, being ubiquitous in every market segment. Once limited to remote locking and unlocking operations, today's key fobs can be used to control many comfort and security features beyond locking and unlocking, such as alarm system operation, vehicle locate, approach lighting, memory seat recall, and remote starting systems. Key fobs are designed to be easy to use as well as easy to carry and transport in personal containers, such as purses, pockets, wallets, and the like. Accordingly, as with other personal effects, key fobs and other portable remote devices can be lost or misplaced or can be otherwise difficult to find. Even with careful tracking of a remote device, children and pets, among other factors, can make location difficult. Moreover, multiple remote devices are often distributed with each vehicle.
Technical Paper

A Numerical Approach to Evaluate the Aerodynamic Performance of Vehicle Exterior Surfaces

2011-04-12
2011-01-0180
This paper outlines a process to assess the aerodynamic performance of different vehicle exterior surfaces. The initial section of the paper summarizes the details of white-light scanning process that maps entire vehicle to points in Cartesian co-ordinate system which is followed by the conversion of scanned points to theme surface. The concept of point-cloud modeling is employed to generate a smooth theme surface from scanned points. Theme surfaces thus developed are stitched to under-body/under-hood (UB/UH) parts of the base vehicle and the numerical simulations were carried out to understand the aerodynamic efficiency of the surfaces generated. Specifics of surface/volume mesh generated, boundary conditions imposed and numerical scheme employed are discussed in detail. Flow field over vehicle exterior is thoroughly analyzed. A comparison study highlighting the effect of front grilles in unblocked condition along with air-dam on flow field has been provided.
Technical Paper

Development of 3-D Digital Proving Ground Profiles for Use in Virtual Prediction of Vehicle System/Sub-System Loads

2011-04-12
2011-01-0189
The usage of multi-body dynamics tools for the prediction of vehicle system/sub-system loads, has significantly reduced the need to measure vehicle loads at proving grounds. The success of these tools is limited by the quality of the digital representations being used to simulate the physical test roads. The development of these digital roads is not a trivial task due to the large quantity of data and processing required. In the end, the files must be manageable in size, have a globally common format, and be simulation-friendly. The authors present a methodology for the development of high quality 3-dimensional (3-D) digital proving ground profiles. These profiles will be used in conjunction with a multi-body dynamics software package (ADAMS) and the FTire™ model. The authors present a case study below.
Technical Paper

Conducting Tire-Coupled (4-Post) Durability Simulations without Road Load Data Acquisition

2011-04-12
2011-01-0225
For decades, the industry standard for laboratory durability simulations has been based on reproducing quantified vehicle responses. That is, build a running vehicle, measure its responses over a variety of durability road surfaces and reproduce those responses in the laboratory for durability evaluation. To bring a vehicle to market quickly, the time between tightening the last bolt on a prototype test vehicle and starting the durability evaluation test must be minimized. A method to derive 4-Post simulator displacements without measuring or predicting vehicle responses is presented.
Technical Paper

Dimensional Quality Control of Repeated Molded Polymer Battery Cell Housings in Automotive Energy Systems

2011-04-12
2011-01-0244
Current manufacture of alternative energy sources for automobiles, such as fuel cells and lithium-ion batteries, uses repeating energy modules to achieve targeted balances of power and weight for varying types of vehicles. Specifically for lithium-ion batteries, tens to hundreds of identical plastic parts are assembled in a repeating fashion; this assembly of parts requires complex dimensional planning and high degrees of quality control. This paper will address the aspects of dimensional quality for repeated, injection molded thermoplastic battery components and will include the following: First, dimensional variation associated with thermoplastic components is considered. Sources of variation include the injection molding process, tooling or mold, lot-to-lot material differences, and varying types of environmental exposure. Second, mold tuning and cavity matching between molds for multi-cavity production will be analyzed.
Technical Paper

Experimental Study of NOx Reduction by Passive Ammonia-SCR for Stoichiometric SIDI Engines

2011-04-12
2011-01-0307
As vehicle fuel economy requirements continue to increase it is becoming more challenging and expensive to simultaneously improve fuel consumption and meet emissions regulations. The Passive Ammonia SCR System (PASS) is a novel aftertreatment concept which has the potential to address NOx emissions with application to both lean SI and stoichiometric SI engines. PASS relies on an underfloor (U/F) SCR for storage of ammonia which is generated by the close-coupled (CC) TWCs. For lean SI engines, it is required to operate with occasional rich pulses in order to generate the ammonia, while for stoichiometric application ammonia is passively generated through the toggling of air/fuel ratio. PASS serves as an efficient and cost-effective enhancement to standard aftertreatment systems. For this study, the PASS concept was demonstrated first using lab reactor results which highlight the oxygen tolerance and temperature requirements of the SCR.
Technical Paper

Three-Way Catalyst Design for Urealess Passive Ammonia SCR: Lean-Burn SIDI Aftertreatment System

2011-04-12
2011-01-0306
Lean-burn SIDI engine technology offers improved fuel economy; however, the reduction of NOx during lean-operation continues to be a major technical hurdle in the implementation of energy efficient technology. There are several aftertreatment technologies, including the lean NOx trap and active urea SCR, which have been widely considered, but they all suffer from high material cost and require customer intervention to fill the urea solution. Recently reported passive NH₃-SCR system - a simple, low-cost, and urea-free system - has the potential to enable the implementation of lean-burn gasoline engines. Key components in the passive NH₃-SCR aftertreatment system include a close-coupled TWC and underfloor SCR technology. NH₃ is formed on the TWC with short pulses of rich engine operation and the NH₃ is then stored on the underfloor SCR catalysts.
Technical Paper

Ultracapacitor Based Active Energy Recovery Scheme for Fuel Economy Improvement in Conventional Vehicles

2011-04-12
2011-01-0345
In this paper, a low-cost means to improve fuel economy in conventional vehicles by employing ultracapacitor based Active Energy Recovery Buffer (AERB) scheme will be presented. The kinetic energy of the vehicle during the coast down events is utilized to charge the ultracapacitor either directly or through a dc-dc converter, allowing the voltage to increase up to the maximum permissible level. When the vehicle starts after a Stop event, the energy stored in the capacitor is discharged to power the accessory loads until the capacitor voltage falls below a minimum threshold. The use of stored capacitor energy to power the accessory loads relieves the generator torque load on the engine resulting in reduced fuel consumption. Two different topologies are considered for implementing the AERB system. The first topology, which is a simple add-on to the conventional vehicle electrical system, comprises of the ultracapacitor bank and the dc-dc converter connected across the dc bus.
Technical Paper

Co-Development of Chevy Volt Tire Properties to Balance Performance and Electric Vehicle Range

2011-04-12
2011-01-0096
As an innovative electric vehicle with some new approaches to energy usage and vehicle performance balance, the Chevy Volt required a special relationship between the OEM and tire supplier community. This paper details this relationship and how advanced tools and technology were leveraged between OEM and supplier to achieve tire component and overall vehicle performance results.
Technical Paper

The Influence of DISI Engine Operating Parameters on Particle Number Emissions

2011-04-12
2011-01-0143
The future EURO 6 emission standard will limit the particle number and mass for gasoline engines. The proposed limit for particle mass is 4.5 mg/km. For particle number there is not yet a limit defined but a wide range of proposals are under discussion (6E11 - 8E12 Particles/km) The particle emissions on a homogeneous SIDI engine are mainly caused by insufficient mixture preparation. A combustion improvement could be achieved by a careful recalibration as well as a hardware optimization that mainly avoids wall impingement and substoichiometric zones in the combustion chamber. The analyses of current SIDI vehicles show significant PN emission peaks during cold start and transient operation on a NEDC cycle. To give a better understanding of cause and effect of the particle formation at steady state results so as transient load steps were performed at an engine dynamometer.
Technical Paper

Particle Number, Size and Mass Emissions of Different Biodiesel Blends Versus ULSD from a Small Displacement Automotive Diesel Engine

2011-04-12
2011-01-0633
Experimental work was carried out on a small displacement Euro 5 automotive diesel engine alternatively fuelled with ultra low sulphur diesel (ULSD) and with two blends (30% vol.) of ULSD and of two different fatty acid methyl esters (FAME) obtained from both rapeseed methyl ester (RME) and jatropha methyl ester (JME) in order to evaluate the effects of different fuel compositions on particle number (PN) emissions. Particulate matter (PM) emissions for each fuel were characterized in terms of number and mass size distributions by means of two stage dilutions system coupled with a scanning mobility particle sizer (SMPS). Measurements were performed at three different sampling points along the exhaust system: at engine-out, downstream of the diesel oxidation catalyst (DOC) and downstream of the diesel particulate filter (DPF). Thus, it was possible to evaluate both the effects of combustion and after-treatment efficiencies on each of the tested fuels.
Technical Paper

Design Parameter Trade-off for Packaging of Stacked Prismatic Batteries

2011-04-12
2011-01-0667
Rechargeable energy storage systems with Lithium-ion pouch cells are subject to various ambient temperature conditions and go through thousands of charge-discharge cycles during the life time of operation. The cells may change their thickness with internal heat generation, cycling and any other mechanisms. The stacked prismatic cells thus experience face pressure and this could impact the pack electrical performance. The pack consists of stiff end plates keeping the pack in tact using bolts, cooling fins to maintain cell temperature and foam padding in between cells. The pack level thermal requirements limit the amount of temperature increase during normal operating conditions. Similarly, the structural requirements state that the stresses and the deflection in the end plates should be minimal. Uncertainties in cell, foam mechanical and thermal properties might add variation to the pack performance.
Technical Paper

High Voltage Hybrid Battery Tray Design Optimization

2011-04-12
2011-01-0671
Hybrid high voltage battery pack is not only heavy mass but also large in dimension. It interacts with the vehicle through the battery tray. Thus the battery tray is a critical element of the battery pack that interfaces between the battery and the vehicle, including the performances of safety/crash, NVH (modal), and durability. The tray is the largest and strongest structure in the battery pack holding the battery sections and other components including the battery disconnect unit (BDU) and other units that are not negligible in mass. This paper describes the mass optimization work done on one of the hybrid batteries using CAE simulation. This was a multidisciplinary optimization project, in which modal performance and fatigue damage were accessed through CAE analysis at both the battery pack level, and at the vehicle level.
Technical Paper

Random Frequency Response Analysis of Battery Systems Using ‘Virtual Shaker Table’

2011-04-12
2011-01-0665
This paper presents ‘Virtual Shaker Table’: a CAE method that enables random frequency structural response and random vibration fatigue analyses of a battery system. The Virtual Shaker Table method is a practical and systematic procedure that effectively assesses battery system vibration performance prior to final design, build and testing. A random structural frequency response analysis identifies the critical frequencies and modes at which the battery system is excited by random inputs. Fatigue life may be predicted after PSD stresses have been ascertained. This method enables frequency response analysis techniques to be applied quickly and accurately, thereby allowing assessment of multiple design alternatives. Virtual Shaker Table facilitates an elegant solution to some of the significant challenges inherent to complex battery system design and integration.
Technical Paper

Process Automation Wizard for Vehicle Dynamics Applications

2011-04-12
2011-01-0740
The imperative to get to the market faster with new and better products, has determined all automotive OEM to rethink their product development cycle, and, as a result, many hardware based processes were replaced and/or augmented with virtual, software based ones. However, the virtualization itself does not guaranties better and faster products. In the area of vehicle dynamics, we concentrate on improving the multi-body model development process, facilitating comprehensive virtual testing, and verifying the robustness of the design. The authors present a highly flexible and efficient environment that encourages, enforces, and facilitates model sharing, reusing of components, and parallelization of vehicle dynamics simulations, developed on top of an existing commercial off-the-shelf engineering software application.
Technical Paper

Usage of Telematics for Battery and Vehicle State Monitoring

2011-04-12
2011-01-0748
This paper presents Telematics Battery Monitoring (TBM). TBM is a multi-faceted approach of collecting and analyzing electric power and vehicle data used to ultimately determine battery state of charge (SOC) and battery state of health (SOH) in both pre- and post-sale environments. Traditional methods of battery SOC analysis include labor intensive processes such as going out to the site of individual vehicle(s), gaining access to the vehicle battery, and then after the vehicle electrical system obtains its quiescent current level, performing a battery voltage check. This time-consuming manual method can practically only cover a small percentage of the vehicle population. In using the vehicle communication capabilities of Telematics, electric power and vehicle data are downloaded, compiled, and post-processed using decision-making software tools.
Technical Paper

Modeling and Analysis of Electromagnetic Coupling Between Electric Propulsion System Components

2011-04-12
2011-01-0756
The engineering of electric propulsion systems requires time and cost efficient methodologies to determine system characteristics as well as potential component integration issues. A significant part of this analysis is the identification of the electromagnetic fields present in the propulsion system. Understanding of the electromagnetic fields during system operation is a significant design consideration due to the use of components that require large current(s) and high voltage(s) in the proximity of other control system items (such as sensors) that operate with low current(s) and voltage(s). Therefore, it is critical to quantify the electromagnetic fields produced by these components within the design and how they may interact with other system components. Often overlooked (and also extremely important) is an evaluation of how the overall system architecture can generate or react to electromagnetic fields (which may be a direct result of packaging approaches).
Technical Paper

Effects of Thickness on Headliner Material Properties

2011-04-12
2011-01-0463
Headliner material plays an important role in occupant protection in situations involving head impact into the interior vehicle roof area. Accurate characterization of its mechanical properties is therefore extremely important for prediction of its behavior during interior impact assessment of a vehicle. Headliner material typically consists of two main layers: the substrate layer which provides structural integrity and impact protection, and the fabric-foam layer which provides proper interior fit and appearance. Both layers vary significantly in thickness and composition between different manufacturers. This paper investigates effects of the layer thickness on compressive strength and deformation of several different headliner materials.
X